Tensor Valuations and Their Local Versions

نویسندگان

  • Daniel Hug
  • Rolf Schneider
چکیده

The intrinsic volumes, recalled in the previous chapter, provide an array of size measurements for a convex body, one for each integer degree of homogeneity from 0 to n. For measurements and descriptions of other aspects, such as position, moments of the volume and of other size functionals, or anisotropy, tensor-valued functionals on convex bodies are useful. The classical approach leading to the intrinsic volumes, namely the Steiner formula for parallel bodies, can be extended by replacing the volume by higher moments of the volume. This leads, in a natural way, to a series of tensor-valued valuations. These so-called Minkowski tensors are introduced in the present chapter, and their properties are studied. A version of Hadwiger’s theorem for tensor valuations is stated. The next natural step is a localization of the Minkowski tensors, in the form of tensor-valued measures. The essential valuation, equivariance and continuity properties of these local Minkowski tensors are collected. The main goal is then a description of the vector space of all tensor valuations on convex bodies sharing these properties. Continuity properties of local Minkowski tensors and of support measures follow from continuity properties of normal cycles of convex bodies. We establish Hölder continuity of the normal cycles of convex bodies, which provides a quantitative improvement of the aforementioned continuity property. 2.1 The Minkowski Tensors We use the notation introduced in Chap. 1. We recall that the intrinsic volumes, certainly the most important valuations in the theory of convex bodies in Euclidean Daniel Hug Karlsruhe Institute of Technology, Department of Mathematics e-mail: [email protected] Rolf Schneider Albert–Ludwigs-Universität Freiburg, Mathematisches Institut e-mail: [email protected]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local tensor valuations on convex polytopes

Local versions of the Minkowski tensors of convex bodies in ndimensional Euclidean space are introduced. An extension of Hadwiger’s characterization theorem for the intrinsic volumes, due to Alesker, states that the continuous, isometry covariant valuations on the space of convex bodies with values in the vector space of symmetric p-tensors are linear combinations of modified Minkowski tensors....

متن کامل

Local tensor valuations

The local Minkowski tensors are valuations on the space of convex bodies in Euclidean space with values in a space of tensor measures. They generalize at the same time the intrinsic volumes, the curvature measures and the isometry covariant Minkowski tensors that were introduced by McMullen and characterized by Alesker. In analogy to the characterization theorems of Hadwiger and Alesker, we giv...

متن کامل

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

The Space of Isometry Covariant Tensor Valuations

It is known that the basic tensor valuations which, by a result of S. Alesker, span the vector space of tensor-valued, continuous, isometry covariant valuations on convex bodies, are not linearly independent. P. McMullen has discovered linear dependences between these basic valuations and has implicitly raised the question as to whether these are essentially the only ones. The present paper pro...

متن کامل

A simple form of MT impedance tensor analysis to simplify its decomposition to remove the effects of near surface small-scale 3-D conductivity structures

Magnetotelluric (MT) is a natural electromagnetic (EM) technique which is used for geothermal, petroleum, geotechnical, groundwater and mineral exploration. MT is also routinely used for mapping of deep subsurface structures. In this method, the measured regional complex impedance tensor (Z) is substantially distorted by any topographical feature or small-scale near-surface, three-dimensional (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016